Conflicting demands on angiosperm xylem: Tradeoffs among storage, transport and biomechanics.
نویسندگان
چکیده
The secondary xylem of woody plants transports water mechanically supports the plant body and stores resources. These three functions are interdependent giving rise to tradeoffs in function. Understanding the relationships among these functions and their structural basis forms the context in which to interpret xylem evolution. The tradeoff between xylem transport efficiency and safety from cavitation has been carefully examined with less focus on other functions, particularly storage. Here, we synthesize data on all three xylem functions in angiosperm branch xylem in the context of tradeoffs. Species that have low safety and efficiency, examined from a resource economics perspective, are predicted to be adapted for slow resource acquisition and turnover as characterizes some environments. Tradeoffs with water storage primarily arise because of differences in fibre traits, while tradeoffs in carbohydrate storage are driven by parenchyma content of tissue. We find support for a tradeoff between safety from cavitation and storage of both water and starch in branch xylem tissue and between water storage capacity and mechanical strength. Living fibres may facilitate carbohydrate storage without compromising mechanical strength. The division of labour between different xylem cell types allows for considerable functional and structural diversity at multiple scales.
منابع مشابه
Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral.
Here, hypotheses about stem and root xylem structure and function were assessed by analyzing xylem in nine chaparral Rhamnaceae species. Traits characterizing xylem transport efficiency and safety, mechanical strength and storage were analyzed using linear regression, principal components analysis and phylogenetic independent contrasts (PICs). Stems showed a strong, positive correlation between...
متن کاملStructure-function constraints of tracheid-based xylem: a comparison of conifers and ferns.
The ferns comprise one of the most ancient tracheophytic plant lineages, and occupy habitats ranging from tundra to deserts and the equatorial tropics. Like their nearest relatives the conifers, modern ferns possess tracheid-based xylem but the structure-function relationships of fern xylem are poorly understood. Here, we sampled the fronds (megaphylls) of 16 species across the fern phylogeny, ...
متن کاملCavitation Resistance among 26 Chaparral Species of Southern California
Resistance to xylem cavitation depends on the size of xylem pit membrane pores and the strength of vessels to resist collapse or, in the case of freezing-induced cavitation, conduit diameter. Altering these traits may impact plant biomechanics or water transport efficiency. The evergreen sclerophyllous shrub species, collectively referred to as chaparral, which dominate much of the mediterranea...
متن کاملUncorrelated evolution of leaf and petal venation patterns across the angiosperm phylogeny.
Early angiosperm evolution, beginning approximately 140 million years ago, saw many innovations that enabled flowering plants to alter ecosystems globally. These included the development of novel, flower-based pollinator attraction mechanisms and the development of increased water transport capacity in stems and leaves. Vein length per area (VLA) of leaves increased nearly threefold in the firs...
متن کاملOutside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration.
Leaf hydraulic supply is crucial to maintaining open stomata for CO2 capture and plant growth. During drought-induced dehydration, the leaf hydraulic conductance (Kleaf) declines, which contributes to stomatal closure and, eventually, to leaf death. Previous studies have tended to attribute the decline of Kleaf to embolism in the leaf vein xylem. We visualized at high resolution and quantified ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant, cell & environment
دوره 40 6 شماره
صفحات -
تاریخ انتشار 2017